
THE HEP SOFTWARE FOUNDATION (HSF)

HSF-TN-2016-02
February 4, 2016

Machine/Job Features

M. Alef1, T. Cass2, J.J. Keijser3, A. McNab4, S. Roiser2, U. Schwickerath2, I. Sfiligoi5

1Karlsruhe Institute of Technology
2CERN

3NIKHEF
4University of Manchester

5Fermi National Accelerator Laboratory

Abstract

Within the HEPiX virtualization group and the WLCG MJF Task Force, a
mechanism has been developed which provides access to detailed information about
the current host and the current job to the job itself. This allows user payloads to
access meta information, independent of the current batch system or virtual machine
model. This information includes the performance of the node and the remaining
run time for the current job.

c© Named authors on behalf of the HSF, licence CC-BY-4.0.

http://creativecommons.org/licenses/by/4.0/

1 Introduction

Within the HEPiX virtualization group [1] and the WLCG MJF Task Force [2], a mechanism
has been developed which provides access to detailed information about the current host
and the current job to the job itself. This allows user payloads to access meta information,
independent of the current batch system or virtual machine model.

The proposed schema is made to be extensible so that additional information can be
added. The purpose of this note is to define the specifications and use case of this schema.
It should be seen as the source of information for the actual implementation of the scripts
required by the sites to provide it.

2 Aims

• The proposed schema must be unique and leave no room for interpretation of the
values provided. For this reason, basic information is used which is well defined
across sites.

• Host and job information can be both static (like the HS06 [3] rating of the hardware)
and dynamic (eg shutdown time may be set at any time by the site.)

• Job specific files will be readable and possibly owned by the user and residing on a
/tmp like area

• The implementation, that is the creation of the files and their contents, can be highly
site specific. A sample implementation can be done per batch system in use, but it
is understood that sites are allowed to change the implementation, provided that
the created numbers match the definitions given in this note.

3 Use cases

The use cases considered in developing the protocols included:

1. The job needs to calculate the remaining time it is allowed to run.

2. The job needs to know how long it was already running.

3. The job wants to know the performance of the processors allocated to it in order to
calculate the remaining time it will need to complete (for CPU intensive jobs).

4. A host needs to be drained, and the payload needs to be informed of the planned
shutdown time.

5. A multiprocessor user job on a non-exclusive node needs to know how many threads
or processes it is allowed to start. This especially useful in a late-binding scenario
where the pilot reserved the processors and the user payload needs to discover this.

1

6. A user job wants to know how many processors are allocated to the current job.

7. A user job wants to know the maximum amount of scratch disk it is allowed to use.

8. A user job wants to set up memory limits to protect itself from being killed by the
batch system automatically.

4 Definitions

On VM-based systems, references to “jobs” are to be interpreted as “virtual machines”
and “machines” as “hypervisors”.

When jobs are running within virtual machines, the entity that provides the system
level configuration or contextualization of the VM acts as the resource provider referred to
in the rest of this note.

5 Environment variables

For each job, two environment variables may be set, with the names $MACHINEFEA-
TURES and $JOBFEATURES.

These environment variables are the base interface for the user payload. Their values
must be provided for the job by the resource provider.

In the case of virtual machines on IaaS cloud platforms, the virtual machine may
discover the values to set for the environment variables from “machinefeatures” and
“jobfeatures” metadata keys provided by resource provider via the cloud infrastructure.
These metadata keys should only be accessed once in the lifetime of each virtual machine.
Alternatively, the values to set may be supplied as part of the contextualization of the
virtual machines.

6 Directories

The environment variables point to directories created by the resource provider. Inside,
the file name is the key, the contents are the values, so that files can be referred to with
expressions like $MACHINEFEATURES/shutdowntime . The directory name should not
include the trailing slash. These directories are either local directories in the filesystem or
sections of the URL space on an HTTP(S) server. The user positively determines whether
the files are to be opened locally or over HTTP(S) by checking for a leading slash or the
prefix http:// or https:// respectively. Typically this can achieved using library functions
which can transparently handle local files and remote URLs when opening files.

Unlike metadata keys, the key/value files may be accessed multiple times to check
for changes in value or in the absence of caching by the user. An HTTP(S) server may
provide HTTP cache control and expiration information which the user may use to reduce
the number of queries. All files in the directories must be readable by both the user and

2

the resource provider services, and have file names which only consist of lowercase letters,
numbers, and underscores.

7 $MACHINEFEATURES

Host-specific key/value pairs which are all:

• Found in the directory pointed to by $MACHINEFEATURES

• Readable by the user who is executing the original job. In the case of pilots this
would be the pilot user at the site.

• Required unless the resource provider cannot determine their value.

• Static unless otherwise stated.

total cpu Number of processors which may be allocated to jobs. Typically the number
of processors seen by the operating system on one worker node (that is the number
of “processor :” lines in /proc/cpuinfo on Linux), but potentially set to more or less
than this for performance reasons. (Use case 3.)

hs06 Total HS06 rating of the full machine in its current setup. HS06 is measured
following the HEPiX recommendations [3], with HS06 benchmarks run in parallel,
one for each processor which may be allocated to jobs. (Use case 3.)

shutdowntime Shutdown time for the machine as a UNIX time stamp in seconds. The
value is dynamic and optional. If the file is missing, no shutdown is foreseen. (Use
case 4.)

grace secs If the resource provider announces a shutdown time to the jobs on this host,
that time will not be less than grace secs seconds after the moment the shutdown
time is set. This allows jobs to begin packages of work knowing that there will be
sufficient time for them to be completed even if a shutdown time is announced. This
value is required if a shutdown time will be set or changed which will affect any jobs
which have already started on this host.

8 $JOBFEATURES

Job specific key/value pairs which are all:

• Found in the directory pointed to by $JOBFEATURES

• Readable and possibly owned by the user who is executing the original job. In the
case of pilots this would be the pilot user at the site.

3

• Required unless the resource provider cannot determine their value.

• Created before the job starts and static unless otherwise stated, or unless the batch
system has a recognised way of changing the parameters of the job in a way the
job is guaranteed to be aware of. For example, if there is a mechanism for a job to
release processors, then the resource provider may update allocated cpu when this
happens.

allocated cpu Number of processors allocated to the current job. (Use case 5.)

hs06 job Total HS06 rating for the processors allocated to this job. The job’s share is
calculated by the resource provider from per-processor HS06 measurements made
for the machine. (Use case 3.)

shutdowntime job Dynamic value. Shutdown time as a UNIX time stamp in seconds.
If the file is missing no job shutdown is foreseen. The job needs to have finished all
of its processing when the shutdown time has arrived. (Use case 1.)

grace secs job If the resource provider announces a shutdowntime job to the job, it will
not be less than grace secs job seconds after the moment the shutdown time is set.
This allows jobs to begin packages of work knowing that there will be sufficient time
for them to be completed even if a shutdown time is announced. This value is static
and required if a shutdown time will be set or changed after the job has started.

jobstart secs UNIX time stamp in seconds of the time when the job started on the
worker node. For a pilot job scenario, this is when the batch system started the pilot
job, not when the user payload started to run. (Use case 2.)

job id A string of printable non-whitespace ASCII characters used by the resource provider
to identify the job at the site. In batch environments, this should simply be the job
ID. In virtualized environments, job id will typically contain the UUID of the VM.

wall limit secs Elapsed time limit in seconds, starting from jobstart secs. This is not
scaled up for multiprocessor jobs. (Use case 1.)

cpu limit secs CPU time limit in seconds. For multiprocessor jobs this is the total for
all processes started by the job. (Use case 1.)

max rss bytes Resident memory usage limit, if any, in bytes for all processes started by
this job. (Use case 8.)

max swap bytes Swap limit, if any, in bytes for all processes started by this job. (Use
case 8)

scratch limit bytes Scratch space limit if any. If no quotas are used on a shared system,
this corresponds to the full scratch space available to all jobs which run on the host.
User jobs from EGI-registered VOs expect the “max size of scratch space used by

4

jobs” value on their VO ID Card [4] to be available to each job in the worst case. If
there is a recognised procedure for informing the job of the location of the scratch
space (eg EGI’s $TMPDIR policy [5]), then this value refers to that space. (Use
case 7.)

5

9 Summary

This note describes how the $MACHINEFEATURES and $JOBFEATURES variables
may be set and used by jobs to obtain meta information from resource providers in a
uniform way across different batch and virtual machine systems.

The following key/value pairs have been defined:

$MACHINEFEATURES $JOBFEATURES
total cpu allocated cpu
hs06 hs06 job
shutdowntime shutdowntime job
grace secs grace secs job

jobstart secs
job id
wall limit secs
cpu limit secs
max rss bytes
max swap bytes
scratch limit bytes

References

[1] T. Cass, “Environmental Information on WN”, Grid Deployment Board, CERN, 13
June 2012, retrieved from https://indico.cern.ch/event/155069/

[2] “Machine / Job Features Task Force”,
https://twiki.cern.ch/twiki/bin/view/LCG/MachineJobFeatures

[3] “HEP-SPEC06 Benchmark”, https://w3.hepix.org/benchmarks/

[4] “The VO ID Card system”, http://operations-portal.egi.eu/vo/help

[5] P. Solagna, “EGI policy for the TMPDIR environment variable usage”, EGI Document
1119, retrieved from https://documents.egi.eu/public/ShowDocument?docid=1119

6

	Introduction
	Aims
	Use cases
	Definitions
	Environment variables
	Directories
	$MACHINEFEATURES
	$JOBFEATURES
	Summary

